
Data Related to our MATA 
Discussions on MLFF and Fishery 

Responses
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Chub Recruitment Estimates
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Rainbow Trout Estimates

Rainbow Trout CPE
(# fish per 10 Hrs Effort)
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Rainbow Trout Predicted vs. Observed under MLFF
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Brown Trout & MLFF

Brown Trout Catch Per Effort (cpue)
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Data Related to our MATA 
Discussions on MLFF and Sand 
Resource & Habitat Responses
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effect included in EIS
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• STEADY-FLOW 
SAND EXPORT  = 
60% OF ROD 
SAND EXPORT

• 5,000-20,000 cfs 
OPTION SAND 
EXPORT = 150%
OF ROD SAND 
EXPORT

• 5,000-25,000 cfs 
OPTION SAND 
EXPORT = 290%
OF ROD SAND 
EXPORT
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RELEASE PATTERNS FOR AN 800,000 ACRE-FOOT MONTH



Known

• Effects of tributary floods on suspended-sand 
concentration and grain size in the Colorado 
River

• Effects of high dam releases on suspended-
sand concentration and grain size 

• Effects of BHBFs and power plant capacity 
releases conducted during sand-depleted 
periods



Current sediment component 
of the experiment

• Can average or larger inputs of Paria River 
sand, silt, and clay be managed (by 
sequences of dam releases) to offset the 
ongoing erosion of fine-grained sediment 
from Marble and Grand Canyons?…to 
increase turbidity over longer periods to help 
benefit native fish?

• WE ARE STILL WAITING FOR NATURE TO 
COOPERATE



Partially known

• Effect of daily range on sand 
concentration 

• Effects of ramping rates on sand 
concentration



Unknown
• Sand transfer between eddies and channel 

during the various experimental flow options 
(though most eddies will lose sand during 
larger fluctuations, some key eddies may 
actually gain sand) 

• Maintenance of sandbars and backwaters by 
the various experimental flow options

• Importance of seepage erosion as a function 
of down ramping rate

• Sandbar-terrestrial biological linkages under 
the various experimental flow options 
(coupled to carbon and nutrient-budgets)



The big question

If Paria River sediment inputs can be 
managed to offset erosion…can 
hydropower constraints be relaxed and 
fluctuating, “steady”, and BHBF flows be 
seasonally sequenced (a.k.a. designer 
flows) to achieve multiple management 
objectives (sandbars, turbidity, etc.) ???
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Dam closure dramatically compressed flood frequency and
Shifted high flows from spring to summer months – so that the
highest annual monthly volumes now coincide with the warm-
season, sand production period from July through September. . . 

Additionally, while the 
high-flow periods were
decreased in magnitude,
The low-flow periods
were reduced such that
the mean daily flow
nearly doubled. . . . 

The net change was amplified by MLFF - optimizing FOR sand transport,
AND against maintenance of sand bars!



The combined influences of compressed flood frequency and
elimination of about 93 percent of the sand supply, ensured that
sand-transport relationships would shift dramatically in response
To short-term sequences of enrichment and winnowing of the 
sand supply on the bed. . . 

Evidence of this so-
called
“Hysteresis” is obvious 
over short periods
during our recent 
fluctuating-flow 
experiments from 
winter
2003 . . . . 

Yet, we failed to grasp these transport dynamics
regulating export prior to completion of the EIS!
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WHY DID WE MISS THIS NOW-OBVIOUS PHENOMENON? 

We now have 
abundant post-dam 
suspended-sediment 
transport data related 
to concentration & 
grain size . . . . 
combined with detailed 
historical syntheses 
(Topping et al. 2000a; 
2000b) of historical 
pre-dam data.

From 1972 until 1999, we typically only sampled 
on-average once every 8 weeks (compared to 96times/day now!)
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By Eliminating the Low Flows of the Pre-Dam 
and the of No-Action era . . .

We inadvertently 
amplified the efficient 
export of new sand and 
erosion of existing 
sand bars that had 
previously been 
documented and 
predicted by Emmett 
Laursen in his 1976 
engineering report to 
the NPS. . . 

Laursen would have likely pointed this fact out, had
he remain engaged in the EIS process, even in a review capacity.
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New Sand Transport Rating Curves Suggest that
5,000 – 20,000 cfs Alternative Fluctuations

Increase transport for 
sand vs. MLFF under 
lower to moderate 
monthly volume 
releases, but that the 
experimental flows 
might transport less 
sand in high volume 
months – PERHAPS 
WE SHOULD TEST 
THIS PREDICTION. .

Fluctuations from 5,000 – 25,000 cfs with relaxed ramping and daily 
Range are always predicted to export more than MLFF.

Sand Transport at Grand Canyon
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RiverWare Simulations indicate that the probability of having high
Volume release months (1,000,000 ac/ft) is low for the time being. . .

About half of the 
projected monthly 
release volumes will 
likely be between 
600,000 and 800,000 
ac/ft and would 
therefore increase sand 
export under alternate 
fluctuating flows 
relative to MLFF. . . .

Perhaps this impact is not critical if strategic BHBF’s are found to
Result in sustainable sand-bar restoration under relaxed constraints?

Projected GCD Monthly Volumes, 2004-2010

0

5

10

15

20

25

30

35

40

400 500 600 700 800 900 1000 1100

Monthly GCD Volume (Ac-Ft * 1000)

%
 o

f M
on

th
s



Steve Wiele’s Preliminary Sand-Bar Simulations suggest. . .

that some sites might 
actually be able to 
store a little more sand 
under expanded 
fluctuating flows. . . 
This would seem to be 
supported by 1990 
sand-bar and 
backwater data 
suggesting we had 
more after No-Action

However, without a sustainable bar strategy, the sand mass-balance 
data and transport relationships would predict ongoing erosion ?



Other Sand-Bar Simulations suggest. . .

that some sites might 
actually be somewhat 
stable under alternate 
fluctuations, but could 
be subject to slow, but 
continual sand losses 
over time until restored 
by repeated, 
strategically timed 
BHBF release

If bars prove to be sustainable through relaxed implementation of 
BHBF’s, then perhaps their erosion also manages for turbidity?



Could “Sustainable” Sand-Bar Erosion Provide Benefit to Native Fish?

Trade off assessments 
might continue to be 
useful in planning 
experimental 
sequences where 
strategic “designer” 
flows turn resource 
restoration and 
sustainability into 
opportunities for 
multiple benefits. . . 

We cannot explore the full range of options without taking some risks
and moving forward with experimentation to facilitate learning. . .


